Chemistry Review Guide For Unit 5 Test

Please be sure to look over your bellringer practice problems, notes, and lab questions.

Things to know

- Molarity
- Concentration
- Solute vs. Solvent
- Use of a standard concentration curve
- Grams/Moles Conversions

Lise	the	data	table	to	answer	the	next 2	questions.
USE	uie	uala	lable	ιU	aliswei	uic	HEAL Z	, questions,

1. How much water was removed from the Cu(NO₃)₂? crucible + Hydrale - crucible + Annydrou

51.65 - 51.55 = 1.19 H20

2	How many moles of water is thi	s?

1.19 H201	1mol H20
	18 a H2 C

xpress molarity? 3. W

Vhat is molarity??		ways	we ex
Molarity =	Moles	4	W6

crucible (empty)

crucible + hydrate

crucible + anhydrous solid

4. Explain in your own words the terms "dilute" and "concentrated" solutions

5. You need to prepare a solution with 30.0 grams of magnesium chloride (MgCl₂) in 500 mL of water.

a. Calculate the formula mass of MgCl₂/

b. Convert grams to moles.

95.31 9/mol MgC/2

c. Calculate how many Liters are in the given milliliters. 1000 mL = 1 L 500ml

d. Calculate the molarity of this solution.

47.65 grams

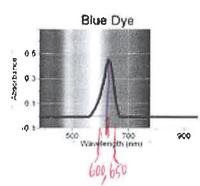
52.65 grams

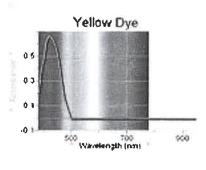
51.55 grams

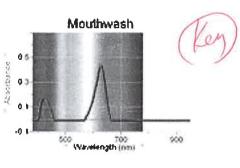
6. If you had 34g of citric acid (C₆H₈O₇) and it is diluted to 1500mL with water. What is the Molarity of the solution?

7. If you have 100 mL of a 2M solution of magne	esium chloride (MgCl ₂), how many moles will you have?
nn Moles	moles 100m/11/
M= moles	2 = moles [00m] 1L = 1/6/1
Lifer	1 -2 -moles (1000m)
Q. Compositional Mod. Aid or "atople" Kool Aid in	
	too strong to drink. If stock Kool-Aid has a molarity of eed to dilute if you wanted to make 50 mL of a perfect 3M
Kool-Aid solution?	eed to dilute if you wanted to make 50 mL of a periect 500
Roof-Ald Soldtion:	V'
M.V. = M2V,	2
111, 1 - 11/2 2	
$(10)V_{1} = (3)(50)$	
$(10)V_1 = (3)(50)$	
1011 = 150	[V, = 15ml of Kooland)
10	1 12 12 MI OF FOOTOFF
1.5	
	solvent? Why can we consider water as the "universal
solvent"? Solve= dissolved	(SONA)
	use water to dissolve
SIIVent =	wes the assolution
art 4: Absorbance, Beer's Law 🐰 🗸 🗸 🗸 🗸	we water to disolve
Rear I au Californi	V/1
Beer's Law Calibration Curve FD&C Yellow 5	Above
	Absorption Spectrum for FD&C Yellow 5
97 y - 9,007s	1.0
0.6	0.9
	0.0
Absorbance	0.7
Absorbance	un Hu
o d	0.5
A 0.1	0.4
0.2	6:1
1	0.7
0.7	G.5
0	
0 6 10 15 20 25 30	360 400 450 500 650 650 650
Concentration of Dye, j.M.	Wavelength, em
	" / WY WENT (MIST, 4761)

Refer to graphs above for Question#10-11


P


10. If Lemon lime Gatorades absorbance was 0.31, what is the concentration of the Yellow 5?

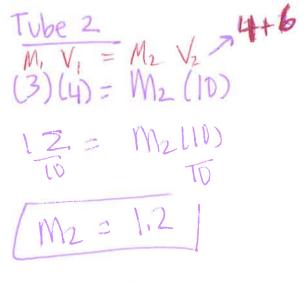

11M = Use graph

11. What is the optimum wavelength of Yellow 5? Explain why?

~425 its where the peak is

12. According to the spectra analysis of the mouthwash, what color is the mouthwash? Explain why?

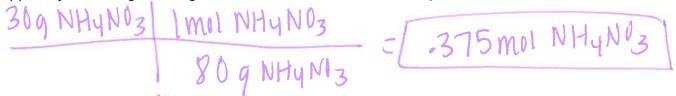
Bive. The Bive dye has a peak @ 1625 & and so does the mouth wash


Complete the data table using $M_1V_1 = M_2V_2$

Test Tube	Volume of 3M) NH ₄ NO ₃ (mL)	Volume of Distilled H₂O added (mL)	New Concentration of NH ₄ NO ₃ (M ₂)
1	2	8	. 6
2	4	6	1,2
3	7	3	2.

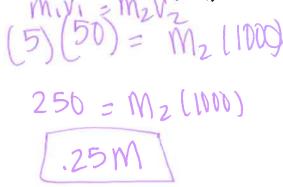
Show your work for calculating Molarity (M₂) here:

M1=3M (givenin data table)


6 = M2(10)

13. What is the formula mass of Ammonium nitrate, NH₄NO₃?

14. Suppose you were given 30g of ammonium nitrate. How many moles is this?


15. If you are given a 10M stock solution of ammonium nitrate, how much stock solution would you need to make 500mL of a 4M solution? Hint: Use $M_1V_1 = M_2V_2$

$$M_1V_1 = M_2V_2$$

 $(10)V_1 = (4)(500)$
 $10V_1 = 2000$ $V_1 = 200 \text{ m}$ stock

16. If you are given a 5M stock solution of ammonium nitrate by the teacher and you want to make 500 mL of a new 2M solution. How much of the original stock solution do you need?

$$M_1 V_1 = M_2 V_2$$

(5) $V_1 = (2)(500)$ $V_1 = 200 \text{ ml}$
 $5V_1 = 1000$

17. If you then took 50mL of your 5M stock solution and added water to make 1000mL of a new solution. What is the molarity of your second solution?

